Perchlorate Treatment Technologies

Sam Hernandez
Standards and Risk Management Division
Office of Ground Water and Drinking Water

Agenda

- Safe Drinking Water Act Requirements
- Compliance Options
- Treatment Technologies
- Questions

Safe Drinking Water Act Requirements

- The Maximum Contaminant Level (MCL) is set as close as feasible to the Maximum Contaminant Level Goal (MCLG)
- The feasible level is determined using the best technology, treatment techniques, and other means that are available
 - Examines for efficacy under field conditions (not solely under laboratory conditions)
 - Takes cost into consideration
- List treatment technology and techniques capable of meeting an MCL referred to as Best Available Technologies (BAT)
- Also lists Small System Compliance Technologies (SSCT)
 - SSCT are technologies that achieve compliance with the MCL and that are determined to be affordable for small systems

3

Best Available Technologies (BAT)

- EPA evaluates the following criteria to identify BAT:
 - Capability for high removal efficiency;
 - A history of full scale operation;
 - General geographic applicability;
 - Reasonable cost (for large systems);
 - Service life;
 - Compatibility with other water treatment processes; and
 - Ability to bring all of the water in a system into compliance.

Small System Compliance Technologies (SSCT)

- In addition to the criteria for BAT's, EPA also evaluates the following criteria for SSCTs
 - Affordability of the treatment at households in systems serving
 - 25-500 people
 - 501 3,300 people, and
 - 3,301 10,000 people
- Considers packaged or modular systems, and point of entry (POE) and point of use (POU) systems

Perchlorate Anion

• Inorganic Ion, CIO₄-

- Occurs as Perchlorate salts
 - Ammonium Perchlorate, NH₄CIO₄
 - Perchloric Acid, HCIO₄

- Highly soluble, dissociates completely
- · Conventional treatment will not remove it

7

Ion Exchange Technology

Effective Anion Exchange Resins

Highest Affini

- Perchlorate Selective Resins
- Nitrate Selective Resins
- Strong Base Anion Exchange Resins
- Weak Base Anion Exchange Resins

15

Perchlorate Selective Resin

Advantages

- Very High Affinity for Perchlorate
 - Limited sensitivity to competing anions
 - can remove perchlorate to below 4 μg/L
- Bed Volumes
 - Ranging from 100,000 to 170,000 Bed Volumes
 - Longer run-times, less residuals generated and lower operating cost than other resin types

Perchlorate Selective Resin

Disadvantages

- Resin regeneration is difficult
- · Resin is generally disposed
- Disposal
 - Co-contaminants might affect final disposal options
 - Generally disposed at non-hazardous disposal facilities

17

System Level Costs - Anion Exchange

Population Served	Total Capital Costs	Operation and Maintenance Costs
25 – 500	\$150,000	\$6,000 / yr
501 – 3,300	\$400,000	\$25,000 / yr
3,301 – 10,000	\$1,500,000	\$100,000 / yr
10,000 - 50,000	\$3,000,000	\$300,000 / yr
50,001 - 100,000	\$6,500,000	\$1,000,000 / yr

* O&M Costs include residuals disposal

Advantages and Disadvantages

Advantages

- Reducing bacteria destroys Perchlorate
- Demonstrated to remove perchlorate below 4 μg/L
- No Perchlorate in waste/residual stream

Disadvantages

- Requires pre- and post-treatment water adjustments
- Water temperature must be kept above 10°C for biomass growth
- Operational complexities
- State implementation requirements and public perception might be impediments

System Level Costs - Biological Treatment

Population Served	Total Capital Costs	Operation and Maintenance Costs
25 – 500	\$1,000,000	\$40,000 / yr
501 – 3,300	\$2,00,000	\$100,000 / yr
3,301 – 10,000	\$5,000,000	\$300,000 / yr
10,000 - 50,000	\$9,500,000	\$750,000 / yr
50,001 - 100,000	\$18,000,000	\$1,500,000 / yr

* O&M Costs include residuals disposal

23

Reverse Osmosis – Membrane Filtration

- Semi-permeable membrane removes Perchlorate
- Water passes through the membrane
- Dissolved and suspended solids are rejected by membrane (steric exclusion)

Advantages and Disadvantages for POU

Advantages

- Economical option for small systems
- >90% perchlorate removal
- Removes most co-contaminants
- Residual discharges to sewer, septic system
- Treats small portion of household consumption (at tap)

Disadvantages

- Not all states allow POU devices
- System must be owned, controlled, and maintained by the water system or by a person under contract with the water system
- Customer participation

29

System Level Costs – Reverse Osmosis POU

Population Served	Total Capital Costs	Operation and Maintenance Costs
25 – 100	\$10,000	\$5,000 / yr
101 – 500	\$60,000	\$15,000 / yr
501 – 1,000	\$140,000	\$45,000 / yr
1.001 - 3.300	\$350.000	\$100.000 / vr

Modified Granular Activated Carbon (GAC)

- Performance Review:
 - Most of bench and piloting work prior to 2006
 - No performance data on a full-scale demonstration
 - Not aware of peer reviewed information that would enable listing as a BAT or SSCT

31

Summary

- EPA is evaluating technologies for listing as BATs and SSCTs
- EPA is currently considering available data (efficacy and cost) for listing
 - Anion Exchange,
 - Biological Treatment, and
 - Reverse Osmosis (both centralized and POU)